Fellow, IEEE
Abstract:This paper proposes a correlation-based three-stage channel estimation strategy with low pilot overhead for reconfigurable intelligent surface (RIS)-aided millimeter wave (mmWave) multi-user (MU) MIMO systems, in which both users and base station (BS) are equipped with a hybrid RF architecture. In Stage I, all users jointly transmit pilots and recover the uncompressed received signals to estimate the angle of arrival (AoA) at the BS using the discrete Fourier transform (DFT). Based on the observation that the overall cascaded MIMO channel can be decomposed into multiple sub-channels, the cascaded channel for a typical user is estimated in Stage II. Specifically, using the invariance of angles and the linear correlation of gains related to different cascaded subchannels, we use compressive sensing (CS), least squares (LS), and a one-dimensional search to estimate the Angles of Departure (AoDs), based on which the overall cascaded channel is obtained. In Stage III, the remaining users independently transmit pilots to estimate their individual cascaded channel with the same approach as in Stage II, which exploits the equivalent common RIS-BS channel obtained in Stage II to reduce the pilot overhead. In addition, the hybrid combining matrix and the RIS phase shift matrix are designed to reduce the noise power, thereby further improving the estimation performance. Simulation results demonstrate that the proposed algorithm can achieve high estimation accuracy especially when the number of antennas at the users is small, and reduce pilot overhead by more than five times compared with the existing benchmark approach.
Abstract:Extremely large antenna arrays (ELAA) are regarded as a promising technology for supporting sixth-generation (6G) networks. However, the large number of antennas significantly increases the computational complexity in precoding design, even for linearly regularized zero-forcing (RZF) precoding. To address this issue, a series of low-complexity iterative precoding are investigated. The main idea of these methods is to avoid matrix inversion of RZF precoding. Specifically, RZF precoding is equivalent to a system of linear equations that can be solved by fast iterative algorithms, such as random Kaczmarz (RK) algorithm. Yet, the performance of RK-based precoding algorithm is limited by the energy distributions of multiple users, which restricts its application in ELAA-assisted systems. To accelerate the RK-based precoding, we introduce the greedy random Kaczmarz (GRK)-based precoding by using the greedy criterion-based selection strategy. To further reduce the complexity of the GRK-based precoding, we propose a visibility region (VR)-based orthogonal GRK (VR-OGRK) precoding that leverages near-field spatial non-stationarity, which is characterized by the concept of VR. Next, by utilizing the information from multiple hyperplanes in each iteration, we extend the GRK-based precoding to the aggregation hyperplane Kaczmarz (AHK)-based pecoding algorithm, which further enhances the convergence rate. Building upon the AHK algorithm, we propose a VR-based orthogonal AHK (VR-OAHK) precoding to further reduce the computational complexity. Furthermore, the proposed iterative precoding algorithms are proven to converge to RZF globally at an exponential rate. Simulation results show that the proposed algorithms achieve faster convergence and lower computational complexity than benchmark algorithms, and yield very similar performance to the RZF precoding.
Abstract:This paper investigates a downlink near-field extremely large-scale multiple-input multiple-output (XL-MIMO) communication system with sparse uniform planar arrays (UPAs). Based on the Green's function-based channel model, the paper focuses on the power distribution of the arrived signal near the focused point of the transmit sparse UPA. In the vicinity of the focused point, along the x-axis and z-axis directions, closed-form expressions for the power distributions are derived. Based on that, expressions for the width and length of the main lobe are obtained in closed form, both of which decrease as the antenna spacing increases. Furthermore, the paper introduces a crucial constraint on system parameters, under which effective degrees-of-freedom (EDoF) of XL-MIMO systems with sparse UPAs can be precisely estimated. Then, the paper proposes an algorithm to obtain a closed-form expression, which can estimate EDoF with high accuracy and low computational complexity. The numerical results verifies the correctness of the main results of this paper. Furthermore, the numerical results reveals the improvement in the performance of XL-MIMO systems with the use of sparse UPAs.
Abstract:This letter investigates the optimal antenna spacing for a near-field XL-MIMO communication system from the perspective of the array gain. Specifically, using the Green's function-based channel model, the letter analyzes the channel capacity, which is related to the effective degrees-of-freedom (EDoF). Then, the letter further investigates the applicability of two EDoF estimation methods. To increase EDoF, this letter focuses on analyzing the impact of antenna spacing. Furthermore, from the perspective of the array gain, the letter derives an approximate closed-form expression of the optimal antenna spacing, at which EDoF is maximized and the array gain at the antenna nearest to the focused antenna of the transmit array becomes zero. Finally, numerical results verify the main results of this letter.
Abstract:As an emerging technology, cooperative bi-static integrated sensing and communication (ISAC) is promising to achieve high-precision sensing, high-rate communication as well as self-interference (SI) avoidance. This paper investigates the two-timescale design for access point (AP) mode selection to realize the full potential of the cooperative bi-static ISAC network with low system overhead, where the beamforming at the APs is adapted to the rapidly-changing instantaneous channel state information (CSI), while the AP mode is adapted to the slowly-changing statistical CSI. We first apply the minimum mean square error (MMSE) estimator to estimate the channel between the APs and the channels from the APs to the user equipments (UEs). Then we adopt the low-complexity maximum ratio transmission (MRT) beamforming and the maximum ratio combining (MRC) detector, and derive the closed-form expressions of the communication rate and the sensing signal-to-interference-plus-noise-ratio (SINR). We formulate a non-convex integer optimization problem to maximize the minimum sensing SINR under the communication quality of service (QoS) constraints. McCormick envelope relaxation and successive convex approximation (SCA) techniques are applied to solve the challenging non-convex integer optimization problem. Simulation results validate the closed-form expressions and prove the convergence and effectiveness of the proposed AP mode selection scheme.
Abstract:This paper proposes a cooperative integrated sensing and communication (ISAC) scheme for the low-altitude sensing scenario, aiming at estimating the parameters of the unmanned aerial vehicles (UAVs) and enhancing the sensing performance via cooperation. The proposed scheme consists of two stages. In Stage I, we formulate the monostatic parameter estimation problem via using a tensor decomposition model. By leveraging the Vandermonde structure of the factor matrix, a spatial smoothing tensor decomposition scheme is introduced to estimate the UAVs' parameters. To further reduce the computational complexity, we design a reduced-dimensional (RD) angle of arrival (AoA) estimation algorithm based on generalized Rayleigh quotient (GRQ). In Stage II, the positions and true velocities of the UAVs are determined through the data fusion across multiple base stations (BSs). Specifically, we first develop a false removing minimum spanning tree (MST)-based data association method to accurately match the BSs' parameter estimations to the same UAV. Then, a Pareto optimality method and a residual weighting scheme are developed to facilitate the position and velocity estimation, respectively. We further extend our approach to the dual-polarized system. Simulation results validate the effectiveness of the proposed schemes in comparison to the conventional techniques.
Abstract:In this paper, we analyze the role of fluid antenna systems (FAS) in multi-user systems with hardware impairments (HIs). Specifically, we investigate a scenario where a base station (BS) equipped with multiple fluid antennas communicates with multiple users (CUs), each equipped with a single fluid antenna. Our objective is to maximize the minimum communication rate among all users by jointly optimizing the BS's transmit beamforming, the positions of its transmit fluid antennas, and the positions of the CUs' receive fluid antennas. To address this non-convex problem, we propose a block coordinate descent (BCD) algorithm integrating semidefinite relaxation (SDR), rank-one constraint relaxation (SRCR), successive convex approximation (SCA), and majorization-minimization (MM). Simulation results demonstrate that FAS significantly enhances system performance and robustness, with notable gains when both the BS and CUs are equipped with fluid antennas. Even under low transmit power conditions, deploying FAS at the BS alone yields substantial performance gains. However, the effectiveness of FAS depends on the availability of sufficient movement space, as space constraints may limit its benefits compared to fixed antenna strategies. Our findings highlight the potential of FAS to mitigate HIs and enhance multi-user system performance, while emphasizing the need for practical deployment considerations.
Abstract:The burgeoning significance of the low-altitude economy (LAE) has garnered considerable interest, largely fuelled by the widespread deployment of unmanned aerial vehicles (UAVs). To tackle the challenges associated with the detection of unauthorized UAVs and the efficient scheduling of authorized UAVs, this letter introduces a novel performance metric, termed sensing capacity, for integrated sensing and communication (ISAC) systems. This metric, which quantifies the capability of a base station (BS) to detect multiple UAVs simultaneously, leverages signal-to-noise ratio (SNR) and probability of detection (PD) as key intermediate variables. Through mathematical derivations, we can derive a closed-form solution for the maximum number of UAVs that can be detected by the BS while adhering to a specific SNR constraint. Furthermore, an approximate solution based on PD constraints is proposed to facilitate the efficient determination of the threshold for the maximum number of detectable UAVs. The accuracy of this analytical approach is verified through extensive simulation results.
Abstract:Most existing DOA estimation methods assume ideal source incident angles with minimal noise. Moreover, directly using pre-estimated angles to calculate weighted coefficients can lead to performance loss. Thus, a green multi-modal (MM) fusion DOA framework is proposed to realize a more practical, low-cost and high time-efficiency DOA estimation for a H$^2$AD array. Firstly, two more efficient clustering methods, global maximum cos\_similarity clustering (GMaxCS) and global minimum distance clustering (GMinD), are presented to infer more precise true solutions from the candidate solution sets. Based on this, an iteration weighted fusion (IWF)-based method is introduced to iteratively update weighted fusion coefficients and the clustering center of the true solution classes by using the estimated values. Particularly, the coarse DOA calculated by fully digital (FD) subarray, serves as the initial cluster center. The above process yields two methods called MM-IWF-GMaxCS and MM-IWF-GMinD. To further provide a higher-accuracy DOA estimation, a fusion network (fusionNet) is proposed to aggregate the inferred two-part true angles and thus generates two effective approaches called MM-fusionNet-GMaxCS and MM-fusionNet-GMinD. The simulation outcomes show the proposed four approaches can achieve the ideal DOA performance and the CRLB. Meanwhile, proposed MM-fusionNet-GMaxCS and MM-fusionNet-GMinD exhibit superior DOA performance compared to MM-IWF-GMaxCS and MM-IWF-GMinD, especially in extremely-low SNR range.
Abstract:The rapid development of generative Artificial Intelligence (AI) continually unveils the potential of Semantic Communication (SemCom). However, current talking-face SemCom systems still encounter challenges such as low bandwidth utilization, semantic ambiguity, and diminished Quality of Experience (QoE). This study introduces a Large Generative Model-assisted Talking-face Semantic Communication (LGM-TSC) System tailored for the talking-face video communication. Firstly, we introduce a Generative Semantic Extractor (GSE) at the transmitter based on the FunASR model to convert semantically sparse talking-face videos into texts with high information density. Secondly, we establish a private Knowledge Base (KB) based on the Large Language Model (LLM) for semantic disambiguation and correction, complemented by a joint knowledge base-semantic-channel coding scheme. Finally, at the receiver, we propose a Generative Semantic Reconstructor (GSR) that utilizes BERT-VITS2 and SadTalker models to transform text back into a high-QoE talking-face video matching the user's timbre. Simulation results demonstrate the feasibility and effectiveness of the proposed LGM-TSC system.